skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Xiaoqiao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Device engineering based on the tunable electronic properties of ternary transition metal dichalcogenides has recently gained widespread research interest. In this work, monolayer ternary telluride core/shell structures are synthesized using a one‐step chemical vapor deposition process with rapid cooling. The core region is the tellurium‐rich WSe2−2xTe2xalloy, while the shell is the tellurium‐poor WSe2−2yTe2yalloy. The bandgap of the material is ≈1.45 eV in the core region and ≈1.57 eV in the shell region. The lateral gradient of the bandgap across the monolayer heterostructure allows for the fabrication of heterogeneous transistors and photodetectors. The difference in work function between the core and shell regions leads to a built‐in electric field at the heterojunction. As a result, heterogeneous transistors demonstrate a unidirectional conduction and strong photovoltaic effect. The bandgap gradient and high mobility of the ternary telluride core/shell structures provide a unique material platform for novel electronic and photonic devices. 
    more » « less